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Abstract .Most of the classical production inventory systems treat the economic order quantities 
(EOQ) of raw materials, which are used in producing the same final products, separately of the 
economic production quantities (EPQ) of these products. This may result in sub-optimization of 
both the (EOQ)’s of raw materials and the (EPQ)’s of final products. But, when raw materials 
are used in production, the ordering quantities for raw materials are dependent on the economic 
batch size and the schedule of the final products. By integrating the procurement and production 
subsystems, the degree of sub-optimality is reduced. In this paper, a unified inventory model of 
integrated production inventory systems, where each of production, demand and deterioration 
rates of final products  and deterioration rates of raw materials , as well as all cost and profit 
parameters are general functions of time . Shortages are allowed only for final products but are 
partially backordered. All cost and profit components are affected by both inflation and time 
value of money. The objective is to find an optimal production schedule for each product in any 
inventory cycle so that the overall total relevant inventory net profit for this integrated system is 
maximized. We develop an exact formula for the total net profit per unit of time. Then, we use 
rigorous mathematical methods to find the optimal stopping and restarting times for each final 
product of this integrated inventory systems. 
 
Keywords. Multi-item integrated systems, Deterioration, Inventory control, Optimality. 
 

1. Introduction 
In so many industrial systems like 
petrochemicals, wood extracted from forests, 
the same kinds of raw materials  are used in 
producing tens of final products . This means 
that the ordering quantities for raw materials  
are dependent on the economic batch sizes of 
the resulting final products ,hence on the 

schedules of the final products. In fact, most 
of the classical production inventory systems 
treat the economic order quantities (EOQ)’s 
of raw materials, which are used in 
producing certain final products, separately 
of the economic production quantities (EPQ) 
of these products. This may result in sub-
optimization of both the (EOQ)’s of raw 
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materials and the (EPQ)’s of final products. By 
integrating the procurement and production 
subsystems, the degree of sub-optimality as 
well as the total relevant net profit of the 
corresponding system is maximized. Applying 
such research results are expected to save huge 
amounts of money that can be used for 
development, as it is the case in most first class 
countries.. For example and according to 
Nahmias Book (Production and Operations 
Analysis (1997)), the investment in inventories 
in the United States held in the manufacturing, 
wholesale and retail sectors during the first 
quarter of 1995 was estimated to be $1.25 
trillion. Therefore, there is a great need to 
perform special research on inventory control 
management, in particular for such giant 
integrated inventory systems, in order to 
improve their efficiency and performance in 
such a way that their total  relevant net profit is 
maximized.   
Nevertheless, many classical inventory 
researchers concern with single item and with 
the so called economic order quantity (EOQ) 
models. problem,  
 Among these are Cardenas and Barron [18] 
,Resh et al [33], Chang [19], Yan and Cheng 
[37] ,Dye et al. [22], Chen and Chen [20] , 
Ben-Daya et al[15],  Manna et al [27] and, 
Maiti and Maiti [28]. A more dynamic 
inventory model was presented by Balkhi and 
Tadj [7], where they derived an EOQ model 
with deteriorating items and time varying 
demand, deterioration, and costs. Balkhi [6] 
conducted another study in which he treated 
the variability of parameters of an inventory 
model for deteriorating items under trade 
credit policy with partial backordering and an 
infinite time horizon. More classical inventory 
models concern with single item and with the 

(EPQ) models has also been introduced by 
several authors. Darwish [21] generalized the 
classical (EPQ) model by studying the 
relation between the setup cost and the length 
of the production cycle.  An inventory model 
in which products deteriorate at a constant 
rate and in which demand, and production 
rates are allowed to vary with time has been 
introduced by Balkhi and Benkhrouf [14].  
Subsequently , Balkhi [3], [8],[9],[11],[13] 
and Balkhi et al [10] , have introduced 
several (EPQ)inventory  models in each of 
which , the demand , production , and 
deterioration rates are arbitrary functions of 
times ,and in some of which , shortages are 
allowed but are completely backlogged. In 
each of the last mentioned six papers, closed 
forms of the total inventory cost were 
established, and the conditions that guarantee 
the optimality of the solution for the 
considered inventory system were also 
introduced.  
 Concerning multi items (EPQ) models ,Ben-
Daya and Raouf [16] have developed an 
approach for more realistic and general 
single period for multi-item with budgetary 
and floor or shelf space constraints, where 
the demand of items follows a uniform 
probability distribution subject to the 
restrictions on available space and budget. 
Bhattacharya [17] has studied two-item 
inventory model for deteriorating items. 
Lenard and Roy [26] have used different 
approaches for the determination of optimal 
inventory policies based on deteriorating 
items with constraint space and investment. 
Rosenblatt [32] has discussed multi-item 
inventory system with budgetary constraint  
using the comparison between the 
Lagrangean and the fixed cycle approach, 
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whereas, Rosenblatt and Rothblum [33] have 
studied a single resource capacity where this 
capacity was treated as a decision variable. 
Balkhi and Foul [4] and [5] have treated the 
problem of multi-item inventory control but 
without resource constraints. Recently, Balkhi 
[2] ,has introduced a general multi item 
production inventory system under budgetary 
constraint  in which  the parameters of the 
model including the cost parameters are all 
arbitrary functions of time. For more details 
about multi-item inventory system, the readers 
are advised to consult the survey of Yasemin 
and Erenguc [38] and the references therein. 
 However, most of the classical production 
inventory papers even those concerned with 
multi items treated the economic order 
quantity (EOQ) of raw materials, which are 
used in producing certain final products, 
separately of the economic production quantity 
of these products. This may result in sub-
optimization of both the (EOQ) of raw 
materials and the (EPQ) of the final products. 
Therefore, a model which unifies the 
optimization for raw materials and final 
products is preferable. To cite a few examples 
of research papers on such models, Goyal [23] 
may be the first contributor to this area .He 
considered an integrated inventory system for 
a single product with non deteriorating items. 
Also, integrated production inventory systems 
are subject to deterioration if they are in the 
situation of work-in-process (WIP). Pahl et al. 
[29] survey the recent trends in modeling 
deterioration in the various fields of production 
planning and give an extensive overview of the 
subject.  Park [30] studied a production 
inventory system for a single product with 
deteriorating raw materials. Raafat [31] 
generalized Park's model to include 

deterioration of final product. Raafat [32] 
extended his earlier model by taking raw 
material and final product both subject to a 
specific monotonic increasing deterioration 
rate. Balkhi [12] generalized the model of 
Raafat[32] by assuming time dependence of 
the production rate, demand rate for final 
product, and of deterioration rates for both 
final product and raw materials. Law and 
Wee [25] considered an integrated 
production-inventory model with both 
ameliorating and deteriorating effects in 
which the manufacturers treat livestock as 
the raw materials. They took in to account 
multiple deliveries, partial backordering and 
time discounting. The amelioration and 
deterioration rates are assumed to follow the 
Weibull distribution .For a complete 
treatment of inventory theory and models the 
reader is referred to Zipkin [39]. 
The main goal of this paper is to generalize 
the paper of Balkhi [1] to the case where all 
cost parameters are general functions of time, 
and to generalize the integrated production 
inventory systems of several products ,which 
share the same raw materials, in various 
ways.  First, each of the production ,demand 
and deterioration rates of final products and 
the deterioration rates of raw materials  as 
well as all cost and profit parameters are 
assumed to be general functions of time 
instead of being a linear or constant 
functions. Second, shortages are allowed 
only for each of the final products, so that 
part of these shortages is backlogged and the 
rest are lost.  The part of the shortage that is 
backlogged is proportional to the waiting 
time. Third ,the on-hand inventories are 
affected by two kinds of deterioration. The 
first kind is the one that has been widely used 
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and concerns items deterioration with time 
while are effectively in stock. The second one 
is concerned with (WIP). Forth, we consider 
the effect of inflation and the time value of 
money on each cost  and profit component. 
Fifth, this paper deals with a very general 
(EPQ) integrated inventory model for multi 
items that use the same raw materials in 
producing certain final products and for which 
many of the related models available in the 
literature are special cases of the introduced 
model. Our analysis deepens, broadens, and 
enriches the available theoretical studies; in 
particular the mathematical results related to 
(EPQ) integrated production inventory models 
of multi items. 
The rest of the paper is organized as follows. 
Following this introduction, we introduce the 
model assumptions and notations. The problem 
is formulated in section 3. We introduce a 
solution procedure for the problem in section 
4. And in sections 5 and 6, we provide 
sufficient conditions that guarantee the 
optimality and the uniqueness of any existing 
solution. We finally conclude the paper in 
section 7.  
  
2.  Model Assumptions and Notation 
The integrated production inventory model 
proposed in this paper is based on the 
following assumptions and notation. 
1. A number m of raw materials is required to 
manufacture n final product. 
2. Deterioration occurs when items are 
effectively in stock for both raw materials and 
final products and there is no repair or 
replacement of deteriorated items during any 
given cycle. However, the (WIP) deterioration 
is possible for the final products. 

3. The demand, production, and deterioration 
rates of the final product i are known and 
general functions of time, denoted by Di(t); 
Pi(t), and ( )tıθ  , respectively , i=1,2,…..,n.  
4. The raw materials can be ordered or 
produced from outside suppliers at infinite 
rate of replenishment so that the arrival of all 
needed raw materials coincides with the start 
of a new production run of the final products. 
5. Raw material  j is subjected to 
deterioration and its deterioration rate is a 
known and general function of time denoted 
by  )(tjδ  ; j = 1,2,…..,m. 
6. rij: is the amount of raw material  j to make 
one unit of the final product i. 
7. Shortages are allowed for the final 
products but only a fraction ieii

ττβ −=)(    
( 1)(0 ≤=≤ − ieii

ττβ ) , of the final 
product i is backordered and the remaining 
fraction (1- )( ii τβ ) is lost, where tTii −= 3τ (see 
Fig. 1 below): 
 is the waiting time up to the new production 
of the final product i when shortages for this 
product start to be backlogged by time 3iT . 
Note that, )( ii τβ  is a decreasing function of 

iτ , which reflects the fact that less waiting 
time implies more backordered item  of final 
product i. 
8. Shortages are not allowed for any of the 
raw materials and lead time is negligible. 
9. The stopping and restarting times are 
denoted as follows (we refer to Fig. 1): 
Ti1 : time at which the production for the final 
product i stops. 
Ti2 : time at which the inventory level for the 
final product i reaches zero. 
Ti3 : time at which the production for the final 
product i restarts. 
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Ti4 : the  end of the cycle for the final product i 
. 
10 .Ii(t) is the inventory level of the final 
product i and qj(t)  is the inventory level of raw 
material j , i = 1, 2,…..,n, and j = 1, 2,…..,m . 
11. The cost structure of this integrated 
production inventory system is as follows: 
(a) for the final product i 
i.   hi(t) : inventory holding cost per unit per 
unit time . 
ii.  si(t): setup cost per cycle. 
iii. ci(t) item (production) cost per unit. 
iv. bi(t):shortage cost per unit per unit of time 
for backlogged items. 
v.  li(t) shortage cost per unit per unit of time 
for lost items. 
Vi. ni(t) is the unit profit of non deteriorated 
items from the final product i 
(b) for raw material j; j = 1,…..,m 
i.   oj (t): inventory holding cost per unit  of 
raw material j per unit of time. 
ii.  kj (t) order cost per order. 
iii. uj (t) unit cost. 
12. All costs and profits components are affected 
by inflation rate and time value of money. We 
shall denote by d1 the inflation rate and by d2 the 
discount rate representing the time value of 
money so that   r = d2 – d1 is the discount rate net 
of inflation 
The objective is to maximize the total relevant 
net profit per unit time for the final products. 
The proposed system operates as follows. The 
cycle starts at  time t = 0 and the inventory of 
the final product i accumulates  at a rate Pi(t)-
Di(t)- θi(t)Ii(t)  up to time t= Ti1 where the 
production  of this product stops. Meanwhile, 
the inventory level of raw material j decreases 
at a rate rijPi(t)- )(tjδ qj(t) . After that, the 
inventory level of the final product i starts to 
decrease due to demand and deterioration at a 

rate  Di(t) - θi(t)Ii(t) up to time t = Ti2, where 
shortages start to accumulate at a rate 

)( ii τβ Di(t) up to time t=Ti3 .Production  for 
the final product i restarts again at time t = 
Ti3  and ends at time t = Ti4 with a rate Pi(t)-
Di(t) to recover both the previous shortages 
in period [Ti2,Ti3] and  to satisfy demand in 
period [Ti3,Ti4], whereas the inventory level 
of raw material j decreases at a rate rijPi(t)- 

)(tjδ qj(t) during [Ti3,Ti4]. The process is 
repeated. In this respect and in order to 
recover the backordered items within period 
[Ti2,Ti3]  and to satisfy the demand in period 
[Ti3,Ti4]. In this respect we require that.  

nitDtDtTtP iiiiii .....,2,1,)()](1[)()](1[)( 3 =+=−+> τββ

 Though the deterioration of raw materials 
has its own effects on the deterioration of the 
final products, but it is not necessary to 
include such effects in the production rate of 
the final products since we shall treat the last 
as arbitrary functions of time. On the other 
hand, since the decisions of stopping and 
restarting of the production of any final 
product occur in a single cycle and are only 
related to the previous or next cycle through 
its initial inventory level, it is only necessary 
to consider the problem in a single cycle.In 
this respect, and to maintain the repeat of the 
process, we shall assume the following 
(which we shall refer to as assumption 1, or 
AS1.) 
The raw materials in the first stages of 
production must cover the need of these raw 
materials  
for the final products exactly. Similar thing 
must hold for the second stage of production 
(AS1.)     
The behavior of the underlying inventory 
system is shown in Fig 1. below. 
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3.  Problem Formulation 
The changes of the inventory level  )(tIi   for 
the final product i is governed by the following 
differential equations  

)()()()()( tIttDtP
dt

tdI
iiii

i θ−−= ; 

10 iTt ≤≤                                  (1)  

)()()()( tIttD
dt

tdI
iii

i θ−−= ; 21 ii TtT ≤≤      (2) 

)()()( tD
dt

tdI
ii

i τβ−= ; 32 ii TtT ≤≤          (3)  

))()(()( tDtP
dt

tdI
ii

i −−= ; 43 ii TtT ≤≤       (4) 

with the boundary conditions: )0(iI =0, )( 2ii TI = 
0, )( 2ii TI = 0, )( 4ii TI = 0 respectively. 
The solutions of the above differential 
equations under their relative boundary 
conditions are  

∫ −= −
t

ug
ii

tg
i dueuDuPetI ii

0

)()( )}()({)( , 

 10 iTt ≤≤                                           (5) 

∫−=
2

)()( )()(
i

ii

T

t

ug
i

tg
i dueuDetI ; 

 21 ii TtT ≤≤                                         (6) 
                                       

∫−=
t

T
iii

i

duuDtI
2

)()()( τβ ; 32 ii TtT ≤≤       (7) 

∫ −−=
4

)}()({)(
iT

t
iii duuDuPtI , 43 ii TtT ≤≤  (8) 

respectively, where   

=)(tgi ∫
t

i duu
0

)(θ                                (9) 

For raw material j (j=1,2,…,m), the changes 
of the inventory level )(tq j  is governed by 
the following differential equations  

)()()(
)(

tqttPr
dt

tdq
jjiij

j δ−−= ;  10 iTt ≤≤  (10)  

)()()(
)(

tqttPr
dt

tdq
jjiij

j δ−−= ; 43 ii TtT ≤≤  (11) 

with the boundary conditions )( 1ij Tq =0 , 
)( 4ij Tq = 0, respectively. The solutions of the 

last two differential equations under their 
relative boundary conditions are  

∫−= 1 )()( )()( i jj
T

t i
ut

ijj duuPeertq λλ , )12(0 1iTt ≤≤  

∫−= 4 )()( )()( i jj
T

t i
ut

ijj duuPeertq λλ ; 43 ii TtT ≤≤ (13) 
respectively; j=1,2……,m  where   

=)(tjλ ∫
t

j duu
0

)(δ  ;j=1,2……,m    (14) 

Next, we derive the present worth of each 
type of cost and  for final product i . 
Present worth of holding cost for final 
product i ( PWHCFi ): 
Final product i is held in stock in the two 
periods  
[0, 1iT ] and [ 1iT , 2iT ], so we have 

PWHCFi= ∫ +−
1

0

)(
iT

i
rt

i dttIeh dttIeh
T

T
i
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i

i

∫ −
2
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1

2
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Integration by parts, we obtain  
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  where  

)(tHi = ∫ −−
t

i

o

ugru
i dueh )( ,                             (16) 

Present worth of shortage cost for 
backordered items from final product i 
(PWSCBFi): 
Shortages for any final product i occur in two 
periods, [Ti2,Ti3] and [Ti3,Ti4] so we have  

dttIeb i

T

T

rt
i

i

i
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3

2
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T
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i
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3
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3
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 Integrating by parts, we get: 
PWSCBFi = 

)17()()()]{()([

)()()]()([

4
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2

3
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∫
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T
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where  
,)(

0
duebtB

t ru
ii ∫ −=                          (18) 

Present worth of storage cost for lost items 
from final product i ( PWSCLFi ): 
 In a small time period (dt) we lose a fraction 

dttDtT iii )()](1 3−− β  from the final product i, 
hence: 

PWSCLFi = ∫ −−−
3

2

)()](1[ 3

i

i

T

T
iii

rt
i dttDtTel β        (19)    

 Using similar techniques we get the 
following: 
Present worth of item production cost for final 
product i ( PWPCFi ): 
 Since production occurs during the two 
periods  

[0, Ti1] and [Ti3,Ti4], so we have: 

PWPCFi = ∫ +−
1

0

)({
iT

rt
ii dtetPc ∫ −

4

3

})(
i

i

T

T

rt
ii dtetPc     (20) 

Note that the last cost includes both 
consumed and deteriorated items from the 
final product i . 
Present worth of the set-up cost for final 
product i ( PWSUCFi ): 
.The set-up of new production for final 
product i occurs twice during any cycle. The 
first is at  
t = 0, and the second is at t = Ti4.. Therefore, 
the present worth of the set-up cost for final 
product i is 
PWSUCFi = 30. irT

i
r

i eses −− + = 3irT
ii ess −+       (21) 

Present worth of item profit for final product 
i ( PWNFi )is equal to the present worth of 
profit of selling the produced items 
subtracting the present worth of profit of 
deteriorated items: 
As we have indicated above ,the number of 
produced items is equal to 

∫ +
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4

3
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T

T
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to 
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T

T
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 Hence, the total relevant net profit per unit 
time for the final product i as a function of 

4321 ,,, iiii TTTT  ,which we shall denote by  
iF  ( 4321 ,,, iiii TTTT ), is given by 
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  Hence, the total relevant net profit for all 
final products, say F , is given by 
F=∑=

n

i iF
1

                                  (24) 
where iF  is given by  (23). 
Now, we derive the present worth concerned 
with all raw materials which are used in 
producing the same final products. 
The present worth of the holding cost of raw 
material j(PWHCRMj),(j=1,2,…,m): 
All raw materials are held in stock in the two 
periods [0, 1iT ] and [Ti3,Ti4] so we have 
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Integrating by parts we obtain 
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The present worth of the cost of raw material 
j (PWCRMj)(j=1,2,….,m)is equal to: 

)0(jjquPWCRMj = + =)( 3ijj Tqu  

∫−− 1

0

)(.0)0( )(i jj
T

i
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ijj dutPeeru λλ
+ 

∫−− 4

3

33 )()()( i

i

jiij
T

T i
urTT

ijj dttPeeru λλ            (27) 

Finally,  
The present worth of ordering raw material j 
(PWOCRMj) (j=1,2,….,m)is given by 

30. irT
j

r
j ekekPWOCRMj −− += = 
)1( 3irT

j ek −+                          (28) 
  Thus, the per unit time total relevant cost 
fro raw material j  as a function of 

4321 ,,, iiii TTTT  which we  shall denote by iW  is 
given by 

)(1

4

PWOCRMjPWCRMjPWHCRMj
T

W
i

j ++=  , 

or 
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Thus, the total relevant cost of all raw 
materials which we shall denote by W is given 
by 

∑ =
=

m

j jWW
1

                                  (30) 
Now, let 

niTTTTTTTT iiii ,....,2,1:][,][,][,][ 44332211 =====  
be the column vectors ,then the total relevant 
net profit per unit time for the whole integrated 
production inventory system, as a function of 

4321 ,,, TTTT which we shall denote by  
TNU ( 4321 ,,, TTTT ) is given by 

)31(

),,,(),,,(

11

1 43214321

aWF

TTTTTNUTTTTTNU
m

j j
n

i i

n

i iiiii

−+=

=

∑∑
∑

==

=  

 )31(),,,( 4321 bWFTTTTTNU jiiiiii −+=  
Our problem is to find the optimal values of 
the vectors  4321 ,,, TTTT  that maximize TNU 
( 4321 ,,, TTTT ) given by (31-a) subject to the 
following constraint: 

43210 iiii TTTT <<<<                              (32) 

∫ ∫ =−−−
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1 2

0 0
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T T
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i
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ii dtetDdtetPF        (34)   

  i=1, 2,… n 
Note that constraint (32) is a natural constraint 
since; otherwise, our problem would have no 

meaning. Constraint (33) comes from the fact 
that, the inventory levels given by (7) & (8) 
must be equal at t=Ti3, whereas constraint 
(34) comes from the fact that the inventory 
levels given by (5) & (6) must be equal at 
t=Ti1 . Note also that, by the two constraints 
(33) and (34) we attain the continuity of the 
production process for the final product i. On 
the other hand, by our above assumption 
(AS1.) we have the following constraints on 
raw materials: 

∑ ∫∑∑
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which are, respectively, equivalent to 
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T
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λ

 
 (35) assure that the availability of all raw 
materials in the first stage of production shall 
cover, exactly, the need of the final products 
from these raw materials , whereas relations 
(36) guarantee similar condition for the 
second stage of production.  Thus, our 
problem (call it (P)) is given by 
Maximize TNU ( 4321 ,,, TTTT ) subject to (32), 
(33) , (34) ,(35) &(36)                   (P) 
  
4. Solution Procedure 
To solve problem (P), we first ignore (32). 
This can be justified by the reasons that; if 
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(32) does not hold, then the whole problem 
would have no meaning. However, we shall 
not consider any solution that does not satisfy 
(32). Thus, our new problem (call it P1 ) is: 
Maximize TNU ( 4321 ,,, iTTTT )    subject to (33), 
(34), (35) &(36)      (P1) 
Note that (P1) is an optimization problem with 
2n+2m equality constraints, so it can be solved 
by LagrangeTechniques. Let 
L( 4321 ,,, TTTT , ,,...,,,...,, 21,21 nn γγγσσσ

mm αααµµµ ,...,,,,...,, 2121 ) be our Lagrangean, 
where mnn µµµγγγσσσ ,........,,,,...,,,,...,, 212121  

mααα ,........,,, 21  are the Lagrange multipliers 
concerned with the constraints (33) , (34) ,(35) 
&(36) respectively, then 
L( 4321 ,,, TTTT , ,,..,,,,...,,,,...,, 212121 mnn µµµγγγσσσ

mααα ,..,, 21 )  
=TNU( 4321 ,,, TTTT ) + ∑∑ ==

+
n

i ii
n

i ii FF
1 21 1 γσ +  

j
m

j jj
m

j j MM 2111 ∑∑ ==
+ αµ                   

Or ,equivalently  
L( 4321 ,,, TTTT , ,,..,,,,...,,,,...,, 212121 mnn µµµγγγσσσ

mααα ,..,, 21 )  
=∑=

n

i iTNU
1
[ ( 4321 ,,, iiii TTTT ) + 21 iiii FF γσ + ]+  

][ 211 jjj
m

j j MM αµ +∑ =
                      (37)                                   

The necessary conditions for having an optima 
are: 

(38),...2,1

,0,0,0,0
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Note that relations (39) repeat the constraints 
(33) through (36) respectively. Here we have 
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 Recalling that, for a specific product k , we 
are seeking the optimal values of 

4321 ,,, kkkk TTTT  ,so we have nothing to do with  
the partial derivatives in (40) other than those 
concerned with the product k. Thus we get 
the following results . 
For i=1,2,…,n ,we have: 
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Note that, (45) gives the maximum total net 
profit iTNU  of the final product i in terms of  

43 &,, iiii TTασ . 
Equations(33),(34),(35),(36),(41),(42),(43),(4
4) &(45) are 6n +2m equations with 6n +2m 
variables, 
namely 4321 ,,, TTTT ,

mmnn αααµµµγγγσσσ ,...,,,,...,,,,...,,,...,, 212121,21  
so that the solution(s) of these equations ( if 
exists) gives the critical points of  
L( 4321 ,,, TTTT ,

mmnn αααµµµγγγσσσ ,...,,,,...,,,,...,,,...,, 212121,21 )  
from which ( 4321 ,,, TTTT ) is the corresponding 
critical point of TNU( 4321 ,,, TTTT ). 
 
 

5. Maximality Uniqueness and Global 
Optimality of Solutions 

In this section, we derive conditions that 
guarantee the maximalism of the solution to 
problem (P) such solution exists  by deriving 
conditions for which the Hessian Matrix of 
our Lagrangian L(.) is negative semi-definite 
. To compute the Hessian matrix of L(.) we 
consider the following notations  

22

2

ilT
il

L
T

L
=

∂
∂  ,   

jlilTT
jlil

L
TT

L
=

∂∂
∂2

,    
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 i,j=1,2,……,n and l=1,2,3,4 
Then the related computations showed that for 
i=1,2,…,n , L( 4321 ,,, iiii TTTT ) has he following 
form 

 
 
 
 
 
(46) 
 
 
 

Where *
i4

*
i3

*
i2

*
i1 T,T,T   ,T are the optimal values 

of 4321 ,,, iiii TTTT . 
By Balkhi and Bebkherouf [13], Stewart [35], 
this  symmetric matrix is negative semi-
definite if  

41212
1 iiiii

TTTTT LLL +≥                         (47) 

32212
2 iiiii

TTTTT LLL +≥                         (48) 

43322
3 iiiii

TTTTT LLL +≥                        (49) 

43412
4 iiiii

TTTTT LLL +≥                         (50) 
Note that if (47) through (50) hold for each i; 
i=1,2,…,n , then the  corresponding total 
relevant net profit for the final product i would 
have a maximum value which in turn implies 
that the total relevant net profit for the whole 
integrated production inventory system 
,considered here , is also maximum .Thus, the 
above arguments lead to the following 
theorem.  
Theorem 1. Any existing solution of (P1) is a 
maximizing solution to (P1) if this solution 
satisfies (47) through (50). 
On the other hand, any existing and 
maximizing solution of (P1) is unique, hence it 
is global optimal. To see this, we note, from 

(33),(34),(35),(36),(41),(42),(43),(44),&(45) 
that each of  4321 ,,, iiii TTTT  can implicitly be 
determined as a function of, say 1iT  i.e 

)(,)(,)(,)( 144133122111 iiiiiiii TfTTfTTfTTfT ====  
from which and relations (41),(42),(43),(44) 
&(45)  we can also conclude that each of 

jjii αµγσ ,,, is also a function of  Ti1, 
say

)(,)(),(,)( 1111 ijjijjiiiiii TTTT ααµµγγσσ ====

.Our arguments in showing the uniqueness 
and global optimality of the solution is based 
on the idea that the general value of 

iTNU given by ( 31-b) must coincide with the 
maxium value of iTNU  given by(45). That is  
 Vi ( )(,)(,)(, 1413121 iiii TfTfTfT )/ )( 14 iTf - 
TNUi ( )( 1ii Tσ ),(,)(),(, 14131 iiij TfTfTα )) =0  (51)  
Where  TNUi=V i / )( 14 iTf    
Here,    Vi( )(,)(,)(, 1413121 iiii TfTfTfT )/ )( 14 iTf  
is taken from (31-b ) and  TNUi 
( )(,)(),(),( 141311 iiijii TfTfTT ασ )) is taken from 
(45).  
Note that any maximizing solution of (P1) (if it 
exists) is unique (hence global maximum) if 
equation (51), as an equation of 1iT  , has a 
unique solution. This fact has been shown by 
Balkhi([ 5] ,[ 7 ] &[ 12]) . 
Thus , the above arguments lead to the 
following theorem 
Theorem 2. Any existing solution of (P1) for 
which (47) through (50) hold, is the unique 
and global optimal solution to (P1) . 
6.  Conclusion 
In this paper, we have considered a unified 
and general multi item integrated production 
inventory system for which the economic 
order quantity (EOQ) of raw materials, which 
are used in producing several final products, 
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as well as the economic production quantity 
(EPQ) of these products are treated together 
.Each of the demand, production and 
deterioration of the final products vary 
arbitrarily with time, whereas the deterioration 
rates of the required raw materials are also 
arbitrarily time varying .Each of the required 
raw material ,needed to produce one unit of 
any of the final products, is proportional to the 
production rate of this final product.  Shortages 
are allowed only for the final products but are 
partially backordered. Both inflation and time 
value of money are incorporated in all costs 
and profits components. The objective is to 
maximize the overall total relevant  net profit 
of this unified and multi item integrated 
production inventory system. We have built an 
exact mathematical model for such unified 
multi item system ,and introduced a solution 
procedure by which we can determine the 
optimal stopping and restarting production 
times in any cycle for any of the final products. 
Then, sufficient conditions that guarantee the 
uniqueness and global optimality of any 
existing solution are established. Most of 
related models that have been introduced by 
previous authors are special cases of our 
model. This seems to be the first time where 
such unified and multi item integrated 
production inventory system is mathematically 
treated. 
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